生物化學與分子生物學/信使RNA與不均一核RNA
| 醫(yī)學電子書 >> 《生物化學與分子生物學》 >> 核酸的結(jié)構(gòu)與功能 >> RNA的結(jié)構(gòu)與功能 >> 信使RNA與不均一核RNA |
| 生物化學與分子生物學 |
|
|
|
遺傳信息從DNA分子抄錄到RNA分子中的過程稱為轉(zhuǎn)錄(transcription)。在真核生物中,最初轉(zhuǎn)錄生成的RNA稱為不均一核RNA(heterogeneous nuclearRNA,hnRNA),然而在細胞漿中起作用,作為蛋白質(zhì)的氨基酸序列合成模板的是mRNA(messengerRNA)。hnRNA是mRNA的未成熟前體。兩者之間的差別主要有兩點:一是hnRNA核苷酸鏈中的一些片段將不出現(xiàn)于相應的mRNA中,這些片段稱為內(nèi)含子(intron),而那些保留于mRNA中的片段稱為外顯子(exon)。也就是說,hnRNA在轉(zhuǎn)變?yōu)閙RNA的過程中經(jīng)過剪接,被去掉了一些片段,余下的片段被重新連接在一起;二是mRNA的5′末端被加上一個m7pGppp帽子,在mRNA3′末端多了一個聚腺苷酸(polyA)尾巴。mRNA從5′末端到3′末端的結(jié)構(gòu)依次是5′帽子結(jié)構(gòu),5′末端非編碼區(qū),決定多肽氨基酸序列的編碼區(qū),3′末端非編碼區(qū),和多聚腺苷酸尾巴。多聚腺苷酸尾一般由數(shù)十個至一百幾十個腺苷酸連接而成。隨著mRNA存在時間的延續(xù),這段聚A尾巴慢慢變短。因此,目前認為這種3′末端結(jié)構(gòu)可能與增加轉(zhuǎn)錄活性以及使mRNA趨于相對穩(wěn)定有關(guān)。原核生物的mRNA沒有這種首、尾結(jié)構(gòu)。
![]()
圖15-13 hnRNA與mRNA的結(jié)構(gòu)比較
(涂斜線者為外顯子,空白者為內(nèi)含子)
1961年,Jacob和Monod首先提出了mRNA的概念。在真核細胞中,由于蛋白質(zhì)是在胞漿中而不是在核內(nèi)合成,因此顯然要求有一個中間物將DNA上的遺傳信息傳遞至胞漿中。后來的研究證實,這種中間物即信使RNA。mRNA的核苷酸序列與DNA序列相應,決定著合成蛋白質(zhì)的氨基酸序列。它如何指導氨基酸以正確的順序連接起來呢?不同的mRNA堿基組成和排列順序都不同,但都只有A,G,C,U4種堿基。如果一個堿基就可以決定一個氨基酸,則只有四種變化方式,如果兩個堿基決定一個氨基酸,則只有16種變化方式,都不能滿足20種氨基酸的需要。1961年Crick和Brenner的實驗得出了三個核苷酸編碼一個氨基酸的結(jié)論,并將這種三位一體的核苷酸編碼稱做遺傳密碼(genetic code)或三聯(lián)體密碼,這樣就可以有64種不同的密碼,但此情況下必須假定有一些氨基酸使用兩個以上的密碼。這一假定很快就被證明是對的。遺傳密碼具有下列特征:
(1)三個核苷酸組成一個密碼子,每個密碼子由三個前后相聯(lián)的核苷酸組成,一個密碼子只為一種氨基酸編碼。共有64個密碼子;
(2)密碼子之間不重疊使用核苷酸,也無核苷酸間隔;
(3)一種氨基酸可有多個密碼子,這個特點稱為密碼子的簡并性;
(4)密碼子的通用性,所有生物從最低等的病毒直至人類,蛋白質(zhì)合成都使用同一套密碼子表(表15-8),僅有極少的例外,如特殊細胞器線粒體,葉綠體所用的密碼稍有不同。(表15-9)。
表15-8 通用遺傳密碼及相應的氨基酸
| 第一個核苷酸5′ | 第二個核苷酸 | 第三個核苷酸3′ | |||
| U | C | A | G | ||
| U | 苯丙氨酸 | 絲氨酸 | 酪氨酸 | 半胱氨酸 | U |
| 苯丙氨酸 | 絲氨酸 | 酪氨酸 | 半胱氨酸 | C | |
| 亮氨酸 | 絲氨酸 | 終止碼 | 終止碼 | A | |
| 亮氨酸 | 絲氨酸 | 終止碼 | 色氨酸 | G | |
| C | 亮氨酸 | 脯氨酸 | 組氨酸 | 精氨酸 | U |
| 亮氨酸 | 脯氨酸 | 組氨酸 | 精氨酸 | C | |
| 亮氨酸 | 脯氨酸 | 谷氨酰胺 | 精氨酸 | A | |
| 亮氨酸 | 脯氨酸 | 谷氨酰胺 | 精氨酸 | G | |
| A | 異亮氨酸 | 蘇氨酸 | 天冬酰胺 | 絲氨酸 | U |
| 異亮氨酸 | 蘇氨酸 | 天冬酰胺 | 絲氨酸 | C | |
| 異亮氨酸 | 蘇氨酸 | 賴氨酸 | 精氨酸 | A | |
| 蛋氨酸 | 蘇氨酸 | 賴氨酸 | 精氨酸 | G | |
| G | 纈氨酸 | 丙氨酸 | 天冬氨酸 | 甘氨酸 | U |
| 纈氨酸 | 丙氨酸 | 天冬氨酸 | 甘氨酸 | C | |
| 纈氨酸 | 丙氨酸 | 谷氨酸 | 甘氨酸 | A | |
| 纈氨酸 | 丙氨酸 | 谷氨酸 | 甘氨酸 | G | |
表15-9 通用遺傳密碼與線粒體遺傳密碼之間的一些差異
| 密碼子 | 通用編碼 | 線粒體編碼 | |||
| 哺乳動物 | 果蠅 | 酵母菌 | 植物 | ||
| UGA | 終止碼 | 色氨酸 | 色氨酸 | 色氨酸 | 終止碼 |
| AUA | 異亮氨酸 | 蛋氨酸 | 蛋氨酸 | 蛋氨酸 | 異亮氨酸 |
| CUA | 亮氨酸 | 亮氨酸 | 亮氨酸 | 蘇氨酸 | 亮氨酸 |
| AGA | 精氨酸 | 終止碼 | 絲氨酸 | 精氨酸 | 精氨酸 |
| AGA | |||||
注:下標橫線者為與通用編碼不同的編碼
究竟哪一個密碼子為哪一種氨基酸編碼,即密碼子與氨基酸之間的對應關(guān)系已在60年代研究解決了。1964年Nirenberg用一種RNA聚合酶體外合成了多聚尿苷酸、多聚腺苷酸等多聚核苷酸,將這些多聚核苷酸分別用于蛋白質(zhì)的體外合成。發(fā)現(xiàn),當所用的多聚核苷酸為多聚尿苷酸時,只有多聚苯丙氨酸合成,這意味著UUU為苯丙氨酸編碼;用其它多聚核苷酸進行相應的實驗后發(fā)現(xiàn),CCC為脯氨酸編碼,而AAA為賴氨酸編碼;其后,有人又用核苷酸比例為已知,但是核苷酸序列隨機的多聚核苷酸,以及用已知序列的含兩種或兩種以上核苷酸的多聚核苷酸進行相應的實驗,將結(jié)果加以數(shù)理統(tǒng)計處理,又解讀了一批密碼子,其中包括三個終止碼,最后,還有一些密碼子是通過合成已知序列的三聚核苷酸與核蛋白體和載有放射性同位素標記的氨基酸的tRNA共沉淀原理予以解讀的。在所有密碼子中,AUG不僅為蛋氨酸編碼,而且又是翻譯(translation,以mRNA上的遺傳信息指導核蛋白體上多肽鏈合成的過程)的起始信號,UAA、UAG和UGA不為任何氨基酸編碼,而是作為翻譯的終止信號,統(tǒng)稱為終止碼(stop codon),又常被叫作無意義碼(nonsense codon)。
大多數(shù)氨基酸是由一個以上的密碼子所編碼。這個事實提出了一個問題:編碼同一種氨基酸的一組密碼子的使用頻率是否都相同?細致的分析表明,無論是原核生物,還是高等真核生物,密碼子的使用頻率并不是平均的,有些密碼子的使用率很高,有些則幾乎不使用,其使用頻率主要與細胞內(nèi)tRNA含量呈正相關(guān)。
| 關(guān)于“生物化學與分子生物學/信使RNA與不均一核RNA”的留言: | |
|
目前暫無留言 | |
| 添加留言 | |